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ANALYSIS  

This year's game called for an all-around proficient robot that can intake, shoot, and 

climb. All of these mechanisms need to connect effectively so we can cycle as much cargo as 

possible. With a more open style field this year and a scoring zone in the middle of the field, we 

have more angles to score from, as a result of this, the team agreed that we need a robot that 

can maneuver quickly and precisely. Due to the lack of safe zones, we need a robot that is able 

to dynamically adjust to actions of other robots. Having a robot that is able to climb is crucial 

because points gained by a climb are consistent and can’t be defended upon. They also provide 

ranking points.  

Our mechanisms priorities are 

below.    

Shooter 

1. Consistent aim 

2. Quick shots 

3. Adjustable Hood in order 

to make shots from 

varying distances 

Feeder 

1. Hold 2 balls 

2. Quick transfer 

3. Low to the ground to lower the center of mass 

Intake 

1. Durable (can handle running in to walls and other robots running in to it) 

2. Touch it own it (obtain balls with inconsistent variables) 

Climbing 

1. Climb to bar 2 in less than 10 seconds 

2. Climb to bar 4 in 20 seconds 

3. Compact 
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ROBOT DESIGN 

DRIVE TRAIN 

 

 
The drive base is optimized for movement around the central hub. Swerve drive was the best 
option to move quickly and accurately around the central Hub. With its simple mechanical 
integration, the team was able to devote more resources to developing the next subsystems 
early on.  
 
Chassis 

• 4 tubes make up the outer chassis frame with standardized holes for easy subsystem 
addition. 

• 2 inner custom tubes with weight savings for electronics routing 
• Bumpers allow for ⅛” gussets to be mounted on the outside tubes 
• Square design allows for easy swerve drive integration and simplifies the programming 

process 
Swerve Drive 

• 6.75:1 gearing for a max speed of 16.3 ft/sec 

• 4” diameter wheels with blue nitrile treads 

• MK4- L2 modules offer both a fast speed and agile movement 

• Maximizes room for electronics and subsystems 

• Simple to mount 



 

 

5 

 

INTAKE 

 

 
 
 

Intake 

The team chose a design that is durable and can obtain balls in any situation. This year’s intake 

consists of 2 robot-width horizontal rollers on a pneumatically actuated four-bar to lift up to 2 

balls over the bumper and into our feeder. This system allows us to run the intake into a wall 

without it breaking. 

Horizontal Rollers 

• 2 belt-driven aluminum rollers powered by 1 Falcon 500 motor spin at 25 feet per 

second which allows intaking at robot max speed 

• 2” black flex wheels provide compliance when intaking balls 

• 2” mecanum wheels on each side of back rollers assist in centering balls 

• 3 additional standoffs run across the intake to add rigidity 

Four Bar System 

• ¼” thick polycarbonate plates provide durability to withstand impacts 

• Non-parallel four-bar optimally positions rollers for ground pickup and storage 

• ¼” Bore 2 ½” Stroke Pneumatic Cylinders on each side actuate to stow/deploy 

• Can pull back into the robot for maneuverability around defenders 
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FEEDER 

 
 
The feeder receives up to two balls from the intake. The intake centers the ball and the feeder 
indexes them to just before the shooter’s flywheel. In order to prevent jamming we have added 
flaps to the side of the feeder to help center the ball. 
 
Our feeder was specifically designed to give us the option of a dual intake to add on is we had 
spare time. The ability of intaking balls from both sides, this gives the driver more freedom 
when driving around the field.   
 
At the center of the feeder there is a double sided ramp (3D printed) which gives the ball 
approximately 2” inches of compression using 3 inch compliant wheels to control when balls 
are released to the shooter.  
 
Feeder specifications 

• The indexer wheels - 18 to 32 tooth pulley run by a 80 tooth belt 
• Indexing wheels - 3“ green compliant wheels which were used for more grip and 

compression of the ball to prevent slipping. 
• Motor to front feeder rollers - 18 to 24 tooth pulley run by a 60 tooth belt  
• Front feeder rollers - 2” compliant wheels also used for gripping the ball. 
• Control – Beam Breaks, both at the entrance and at the end of the feeder 

o Allows programs to track where balls are in the system  
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Iterations: 
We have gone through two iterations of the feeder.  
 
Our original design had a belt system that received the balls from the intake and transferred 
the ball to the indexing wheel. The indexing wheel thereby transferred the balls by moving 
them along the ramp and then transferring them to the shooter. The main problem with this 
design was that it wasn’t as fast and presented many problems such as our ramp (which was 
made out of thin sheet metal), would flex and not maintain the amount of compression we 
wanted. The mounting solution in this design was also not stable causing the robot feeder 
system to be unstable.  
 
Our new feeder design took into account all the above-mentioned problems with the first 
iteration. The ramp was replaced with a flat plane. A speed bump was integrated in this plane 
so that when the ball moved through the plain and reached the speed bump it would move 
uphill and be captured by the two indexing wheels, where the ball would be held until it needed 
to be transferred to the shooter.  
 

 
Ball path 
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SHOOTER 

 

 
 
The shooter includes a flywheel and an adjustable hood with a backspin roller to allow the 
robot to shoot from multiple field locations. An Oak-D stereo camera tracks the reflective tape 
on the goal to position the robot during the shooting sequence. 
 
Flywheel 

• Powered by 2 Falcon 500 motors with a 1:1 belt reduction 
• Flywheels are 2 6” diameter wheels with blue nitrile tread for better traction 
• PID used to set motor rpm 
• Custom in-house made plates with weight savings 

 
Adjustable Hood 

• Allows shooting from 5° to 30° above horizontal 
• Powered by 1 Falcon 500 motor with 135:1 reduction 
• 2” diameter wheels on the backspin roller powered by the flywheel with a 1.94:1 

reduction 
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CLIMBER 

 
 
 
 
 
 
 
 
The climber is made up of a two stage elevator 
and a rotating arm to reach the high and traversal 
rungs. Vertical tubes create the structure for the 
elevator and act as rails for the carriage bearings. 
Structural tubes attached to the feeder transfer 
the climbing load to the chassis and feeder 
structure. 
 
 
 
 
 
 
 
 

Elevator 
• Powered by 2 Falcon 500 motors with 10:1 reduction 
• Raises carriage to max extension height 
• Extends to max height with load of 150 lbs in less than 1 second 
• Gearbox attached to carriage with #25H chain 
• One way ratcheting hooks mounted on ⅛” wall 1” x 2” tubes to hold robot up after the 

match ends 
• Mounted on chassis tubes and feeder superstructure to keep robot rigidity 
• Mounted in the center of mass of the robot to reduce side to side swing 

 
Carriage 

• Constrained to the elevator using ⅝” OD ¼”ID and ½” OD ¼” ID bearings 
 
Rotating Arm 

• Pivoted by a single Neo 550 motor with a single stage pulley reduction and a 2 stage 
versa planetary for a total reduction of 114.3:1 

• Hooks have blue nitrile treads over the rung area to reduce swinging by increasing 

friction 

• 1”x1½” ⅛ wall tube to reduce bending when hitting hard stop  
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PROGRAMMING 

AUTONOMOUS 

Our autonomous plan is for the following: 

2 ball – move off the line, intake 1 then shoot 2 

3 ball – shoot 1, move off the line intake 1 then move to ball 3, shoot 2 

4 ball - shoot 1, move off the line intake 1 then move to ball 3, shoot 2 then move to ball 4 then 

shoot 

4 ball - shoot 1, move off the line intake 1 then move to ball 3, shoot 2 then move to ball 4, 

pause to intake ball from human player  then shoot 

TELEOP 

OVERVIEW 

 Constant acceleration interpolation is an algorithm developed for several robotics 
purposes, but works extremely well for autonomous pathing of a swerve drive in FRC. The idea 
behind the constant acceleration interpolation algorithm is to maximize velocity and minimize 
acceleration changes during an autonomous path. The algorithm accepts a list of points in a 
JSON format generated by our path tool, that includes information such as time, x, y, and theta 
values at a given point, as well as a few other pieces of information, and returns a velocity in 
the x direction, a velocity in the y direction, and a velocity in theta(how much theta should 
change in a second). 
 

SWERVE DRIVE CONTROL 

 When programming our swerve drive, we realized that it would be best to program it in 
a way that would easily allow us to program for our autonomous. To do so, we programmed 
our swerve drive to accept three values, velocities in the x, y, and theta directions. Using the x 
and y velocity, we determine the angle that each wheel must face, as well as what velocity the 
wheels should be spinning. 
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ODOMETRY 

In order to complete a autonomous path, the robot must first know where on the field it 
is. We originally began by using just the SwerveDriveOdometry class created by wpilib, but later 
realized that our odometry could become more accurate by adding different sources of 
information to better our estimation of where we were on the field. One of these sources of 
information was a prediction of where the robot was on the field. We created this estimation 
when running the continuos acceleration algorithm, which returns x, y, and theta velocities. By 
multiplying these velocities by the loop time of the code, we were able to find our change in 
position, and adding that to our previously estimated position gave us a valid estimate of where 
we could be on the field. By averaging this with the prebuilt odometry class, we found much 
greater accuracy in our pathing and odometry.  

In addition to the odometry class and prediction, we also used our camera to determine 
where on the field we are. Our camera has been programmed to return a distance to the target 
in the x and y directions, and when paired with knowledge of our gyro angle, allows us to do a 
little bit of math to determine where on the field we are. Averaging this estimate with our 
previous odometry and velocity based estimate, we determine where our robot is to a far 
greater accuracy. 
 

GENERATING THE VELOCITIES 

 As the robot follows the path, it uses information from 3 points in the path, the previous 
point, the current point, and the next point. The current point is defined as the point closest to 
the robot in time, and the previous and next points are defined according to this point. Once 
these points have been determined, its time to do a little math and send velocities to the robot. 
 In this algorithm, there are essentially three segments, the segment before point 
defined at time T1, the segment in between the point at T1 and another point defined at time 
T2, and the segment after the point at T2. 
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Times T1 and T2 are defined as a percentage of the total time of the line segment. For example, 
if the time between A and B is 10 seconds, and T1 was at 80% of the total time, T1 is at 8 
seconds. If the time between B and C was also 10 seconds, T2 would be at 12 seconds. 
 Now, we have all the information we need to begin determining the velocity of the 
robot throughout the path. In segment 1(the segment between A and T1), the robot can 
continue at a continuous velocity. This velocity can be determined by taking the x, y, and theta 
value at B and subtracting them from the x, y , and theta values at A, and dividing this by the 
time between A and B. The robot can follow this velocity until T1. 
 Once the robot reaches T1, the interpolation portion of the algorithm begins. Between 
T1 and T2, we want to be able to change our velocity from what is required before T1 to what is 
required after T2. In order to do this smoothly, we need to change our acceleration constantly 
during the times between T1 and T2. We can calculate the change in acceleration by dividing 
the difference in velocity between the two points by the time between the two points. By 
multiplying this acceleration by our time step, we can gradually change the velocity of the robot 
to curve around point B on the way to point C. 
 

SIMULATION 

 Due to the variety of reasons that path following could fail when running on the 
robot(odometry, incorrect math, etc.), we decided to test our algorithm using a simulation. This 
simulation was structured similarly to the robot code, running a for loop to simulate timing, and 
the actual algorithm accepting a JSON list. By testing our algorithm coding in a simulation, we 
were able to prove that our algorithm worked properly, before testing with the real robot.

 
 



 

 

13 

 

 On the right side, a picture of our simulation is depicted. The green line represents the 
robot perfectly following the path. We also tested our algorithm by adding noise to our 
simulation 
 

VISION 

 

PATHING TOOL 

   

PathGen is a versatile tool used to create, edit, and optimize autonomous robot paths in real 
time. PathGen is a custom tool that we designed to help with defining and customizing our 
robots path for autonomous. 

 

 

 

 An example path “3BallAuto” from the PathGen editor 
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PATH CREATION 

To create a path simply click on the image of the game field and a path point will be placed. 

 

 

Point placed near a terminal on the field 

 

 

Click on an existing point to edit that point. You will see the point editor appear on the right 
side of the program. 
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Label Name Function 

A Angle Input Set the angle of the selected path point, either by clicking on angle 
dial or through text input 

B Delta Time Input Set the time between previous path point and selected path point 

C X and Y Input Set the (x,y) coordinate of the selected path point (in meters) 

D Interpolation 
Input 

Set the interpolation factor of the selected path point (more 
information later) 

E Save / Delete Delete a path point or save the entire path locally 

F Delete All Delete the entire path 

G Toggle Wheel 
Paths 

Toggles visibility of the path of all four robot wheels (more 
information below) 

H Save Name Set the filename that the path is saved under 

I Load Save Load a locally saved path into the editor 
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MORE ABOUT THE WHEEL PATHS 

 

When the Wheel Paths button toggled on (shown by changing colors to green), four new paths, 
one for each of the robot’s wheels, will appear. Furthermore, when either the Color 
Acceleration or the Color Velocity Button is toggled on the color of the four wheel paths will 
show the acceleration/velocity of the wheel at that point. 

 

 

 

Label Name Function 

A Wheel Paths Shows the path of each wheel throughout the autonomous path. 
Wheel paths above are colored to reflect instantaneous velocity 

B Wheel Paths 
Button 

Toggles the visibility of the wheel paths 

C Color Acceleration 
Button 

Toggles the wheel path coloring to reflect instantaneous 
acceleration 

D Color Velocity 
Button 

Toggles the wheel path coloring to reflect instantaneous velocity 

E Color Key Key for the selected coloring mode, values outside of shown 
range are displayed as black 
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FILE SYSTEM 

The file system on PathGen saves autonomous paths as JSON objects in a folder labeled “json-
paths”. PathGen also has the capability to upload paths directly to the “deploy” folder on the 
roboRIO. Please Note: User file permissions for the “deploy” folder must be changed such that 
lvuser can read and write; use “chmod 777 -R /lvuser/deploy” to change this. 

 

Furthermore, in case of unwanted changes or lost paths, all paths on board the roboRIO can be 
downloaded back to PathGen and saved again locally. 

 

 

 

Label Name Function 

A Upload Button Saves the current path locally and uploads it to the roboRIO 

B Upload All Button Saves the current path locally and uploads all saved paths to the 
roboRIO 

C Download All 
Button 

Downloads all paths on the roboRIO and saves them locally 

D Save Button Saves the current path locally 

E Status Message Displays status of selected operations (e.g. “Upload failed” or 
“Download all successful”) 
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PATH FILE FORMAT 

Paths are saved as JSON objects consisting of a list of path points each containing metadata. An 
example JSON path point as seen in this image. 

 

Field Value Represented 

x Field X coordinate of the path point 

y Field Y coordinate of the path point 

angle Angle of the path point 

time Time of the path point since the beginning of the path in seconds 

deltaTime Time from the previous path point to this path point 

interpolationRange Percent interpolation of the path point as a vertex in the path (used to 
smooth corners of the path) 

index Index of the path point 

timeStamp Timestamp of when the path was last saved, in Epoch Time 
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Note: Some fields contain information that is only relevant to the PathGen program, not the 
robot. 

 

Also, development is in progress on using an mqtt server to send robot odometry values back 
to PathGen to display the robot’s position on the field in real time. 

 

PATH DISPLAY 

The displayed robot path shown in the program is generated through the use of a Constant 
Acceleration Interpolation Algorithm, which smooths corners by gradually adjusting the robot 
velocity between line segments of the path. The weight of this “corner smoothing” can be 
adjusted with the “Interp” field on the point editor. This value ranges from 0 (no smoothing) to 
0.5 (maximum smoothing). The system of displaying the robot path in the PathGen program 
directly mirrors the actual robot code that makes the robot follow a given path. 

 

 

 

Example of an interpolation curve in a path, with the interpolation factor set to maximum 
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PYTHON LIBRARIES 

This project is written in Python 3.10.0 and utilizes Pygame for the user interface. Here is the 
list of all libraries currently being used in the program: 

 

Library Version 

pygame 2.1.0 

paramiko 2.8.1 

paho-mqtt 1.6.1 

bcrypt 3.2.0 

cryptography 36.0.0 

cffi 1.15.0 

pycparser 2.21 

PyNaCl 1.4.0 

scp 0.14.1 

six 1.16.0 

syscolors 0.0.5 

 

All of the required libraries are included in requirements.txt for easy installation. 

PathGen is available for download at: https://github.com/HighlandersFRC/2022-Robot 


